ORGANIC CHEMISTRY

DPP No. 13

Total Marks: 28

Max. Time: 29 min.

Topic: Hydrocarbons

Type of Questions

(3 marks, 3 min.)

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.8 Subjective Questions ('-1' negative marking) Q.9

(4 marks, 5 min.)

[24, 24] [4, 5]

1. The correct order of alkene reactivity towards an electrophile is mentioned in-

(D)
$$CH_2 = CH - OCH_3 > CH_2 = CH - CH_2$$

2. The correct relative rate of reaction of the given alkenes for any given electrophiles is

(A)
$$I > II > IV > III$$

(B)
$$II > IV > III > I$$

(C)
$$II > III > IA > I$$

(D)
$$IV > I > III > II$$

3. The correct order of reactivity towards electrophilic addition reaction :

(II)
$$CH_2 = CH_2$$

(B)
$$|I| > I > IV > II$$

(D)
$$|I| > |V| > |I| > |I|$$

4. The correct order of HOCI/H⁺ addition reaction with the following is :

5.

$$\frac{\text{Cl}_2/\text{H}_2\text{O}}{(\text{excess})}$$
 'X'

Compound 'X' will be:

$$(A) \underset{CI}{\overset{HO}{\bigvee}} (B) \underset{CI}{\overset{CI}{\bigvee}} (C) \underset{CI}{\overset{OH}{\bigvee}} (D) \underset{HO}{\overset{CI}{\bigvee}} (D)$$

6. Which of the following statements is correct?

- (A) Alkynes are more reactive than alkenes towards halogen addition.
- (B) Alkenes are more reactive than alkynes towards halogen addition
- (C) Both alkynes and alkenes are equally reactive towards halogen addition
- (D) Primary vinylic cation RCH=CH is less reactive than secondary vinylic cation RC=CH,

- 7. Mention True (T) and false (F) out of the following statements :
 - **S**₁: In hydroboration oxidation of alkene, H and OH are introduced with a regioselectivity opposite to that of Markownikove`s rule.
 - \mathbf{S}_2 : Electrophilic addition of HCI to 2-methyl propene is reverse of \mathbf{E}^1 elimination reaction of tert-butyl chloride.

(Br is radioactive isotope of bromine)

$$\mathbf{S_4}$$
:

 $\begin{array}{c} & & \\ & \\ & \\ \end{array}$
 $\begin{array}{c} & \\ &$

Codes:

- (A) TTTT
- (B) TTTF
- (C) TFTF
- (D) FTFT

8.
$$\frac{\text{(i)B}_2\text{H}_6/\text{THF}}{\text{(ii)H}_2\text{O}_2/\text{OH}^-} \text{ Major Product}$$

 α - pinene

The products P and Q are respectively -

9. An unsaturated organic compound (A) of molecular formula C₉H₉CI decolourise Br₂/H₂O and produces another unsaturated compoud (B) of molecular formula C₉H₈ in treating with sodamide in liquid ammonia.
(B) on hydration using Hg⁺⁺/H₂SO₄ gives (C) which on vigorous oxidation produces an aromatic dibasic acid (D) giving only one mono nitroproduct. An isomer (E) of (B) on oxidation gives a monobasic acid of molecular mass 122.

Answer Kev

DPP No. #13

(D)

- 1. (D)
- 2.
- 3.
- 5.
- (D)
- 6.

(B)

- 7.
- (A)
- 8.

CH=CH - CI

(A)

(B)

DPP No. #13

- 1. Electron releasing group and stability of carbocation will decide rate of reaction in electrophilic addition reaction.
- 2.

More nucleophilic more stable carbocation

+I and hyperconjugative effects of -CH, group stabilize the carbocation

-Cl is an electron withdrawing group

-M effect of C=O group makes alkene less nucleophilic and destabilizes the carbocation

3. Rate of electrophilic addition reaction α stability of C⁺ produced

$$\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$$

6. Conceptual

 H_3C methyl group shields top face, and bottom face of α -pinene is less hindered hence hydroboration of α -pinene is observed to be 100% stereoselective and syn addition takes place. Anti markownikove's product in case of hydroboration.

9.
$$A = \bigcirc CH = CH - CI$$

$$B = \bigcirc CH_3$$

$$C = \bigcirc CH_3$$

$$C = \bigcirc CH_3$$

